Post-Quantum Cryptography Threat Model

Version: 1.0
Last Updated: 2025-08-28
Security Classification: PUBLIC
Author: MetaMUI Security Team

Executive Summary

This document defines the comprehensive threat model for post-quantum cryptographic implementations in the MetaMUI ecosystem. It identifies quantum and classical threats, analyzes attack vectors, and establishes security assumptions for PQC deployments.

Threat Actors

Quantum-Capable Adversaries

Actor Type Capabilities Timeline Threat Level
Nation-State Large-scale quantum computers (1000+ qubits) 2030-2035 Critical
Advanced Persistent Threats Access to cloud quantum computing 2028-2030 High
Criminal Organizations Limited quantum resources 2035+ Medium
Research Institutions Experimental quantum systems Current Low

Classical Adversaries

Actor Type Capabilities Current Threat
Nation-State Massive computational resources High
APT Groups Advanced cryptanalysis capabilities High
Criminal Syndicates Distributed computing networks Medium
Individual Hackers Standard computing resources Low

Quantum Threats

1. Shor’s Algorithm

Threat Description: Polynomial-time factorization and discrete logarithm solving

Affected Algorithms:

Impact on PQC: None - PQC algorithms designed to be Shor-resistant

Mitigation:

def assess_shor_vulnerability(algorithm: str) -> dict:
    """Assess vulnerability to Shor's algorithm"""
    
    vulnerable = {
        'rsa': {'quantum_complexity': 'polynomial', 'broken': True},
        'ecdsa': {'quantum_complexity': 'polynomial', 'broken': True},
        'ml-kem': {'quantum_complexity': 'exponential', 'broken': False},
        'dilithium': {'quantum_complexity': 'exponential', 'broken': False}
    }
    
    return vulnerable.get(algorithm.lower(), {'unknown': True})

2. Grover’s Algorithm

Threat Description: Quadratic speedup for brute-force searches

Impact:

Mitigation Strategy:

def grover_resistant_key_size(classical_bits: int) -> int:
    """Calculate Grover-resistant key size"""
    
    # Need to double classical security bits
    quantum_resistant_bits = classical_bits * 2
    
    recommendations = {
        128: 256,  # AES-256 for 128-bit post-quantum security
        192: 384,  # Not standard, use 256
        256: 512   # Future consideration
    }
    
    return recommendations.get(classical_bits, quantum_resistant_bits)

3. Quantum Period Finding

Threat Description: Attacks on hidden subgroup problems

Affected Systems:

PQC Resistance:

class QuantumPeriodFindingResistance:
    """Analyze resistance to quantum period finding"""
    
    @staticmethod
    def assess_algorithm(algorithm: str) -> bool:
        """Check if algorithm resists quantum period finding"""
        
        resistant = {
            'ml-kem': True,      # Different hard problem
            'dilithium': True,   # SIS problem resistant
            'falcon': True,      # NTRU problem resistant
            'slh-dsa': True,     # Hash-based, no structure
            'classic-mceliece': True,  # Code-based
        }
        
        return resistant.get(algorithm.lower(), False)

Classical Threats

1. Implementation Attacks

Side-Channel Attacks:

class SideChannelThreats:
    """Model side-channel attack vectors"""
    
    timing_attacks = {
        'risk_level': 'high',
        'affected_operations': ['key_generation', 'signing', 'decapsulation'],
        'mitigation': 'constant_time_implementation'
    }
    
    power_analysis = {
        'risk_level': 'medium',
        'affected_platforms': ['embedded', 'iot', 'smartcards'],
        'mitigation': 'power_randomization'
    }
    
    electromagnetic_emanation = {
        'risk_level': 'medium',
        'affected_range': '1-10 meters',
        'mitigation': 'shielding_and_noise'
    }
    
    cache_timing = {
        'risk_level': 'high',
        'affected_systems': ['shared_hosting', 'cloud'],
        'mitigation': 'cache_oblivious_algorithms'
    }

Fault Injection:

class FaultInjectionThreats:
    """Model fault injection attacks"""
    
    def assess_fault_resistance(self, algorithm: str, 
                               implementation: str) -> dict:
        """Assess resistance to fault injection"""
        
        vulnerabilities = {
            'voltage_glitching': self.check_voltage_protection(),
            'clock_glitching': self.check_clock_protection(),
            'laser_fault': self.check_physical_protection(),
            'rowhammer': self.check_memory_protection()
        }
        
        return {
            'algorithm': algorithm,
            'vulnerabilities': vulnerabilities,
            'overall_risk': self.calculate_risk(vulnerabilities)
        }

2. Cryptanalytic Attacks

Lattice Attacks:

class LatticeAttackAnalysis:
    """Analyze lattice-based attack vectors"""
    
    def estimate_attack_cost(self, parameters: dict) -> dict:
        """Estimate classical attack cost on lattice problems"""
        
        # BKZ attack cost estimation
        n = parameters['dimension']
        q = parameters['modulus']
        
        # Core-SVP hardness
        beta = self.optimal_bkz_blocksize(n, q)
        
        classical_cost = 2 ** (0.292 * beta)  # BKZ 2.0 estimate
        quantum_cost = 2 ** (0.257 * beta)    # Quantum speedup
        
        return {
            'classical_bits': math.log2(classical_cost),
            'quantum_bits': math.log2(quantum_cost),
            'blocksize': beta,
            'secure': classical_cost > 2**128
        }

Code-Based Attacks:

class CodeBasedAttackAnalysis:
    """Analyze code-based cryptosystem attacks"""
    
    def information_set_decoding(self, n: int, k: int, t: int) -> float:
        """Estimate ISD attack complexity"""
        
        # Prange's algorithm complexity
        complexity = math.comb(n, t) * (n - k) ** 3
        
        # Improved algorithms (Stern, May-Ozerov)
        improved_complexity = complexity / (2 ** 20)  # Approximate improvement
        
        return math.log2(improved_complexity)

Hybrid System Threats

Algorithm Confusion Attacks

class HybridSystemThreats:
    """Threats specific to hybrid classical/PQC systems"""
    
    def downgrade_attack_risk(self, protocol: dict) -> str:
        """Assess downgrade attack vulnerability"""
        
        if not protocol.get('version_binding'):
            return 'high'
        
        if not protocol.get('algorithm_negotiation_authenticated'):
            return 'high'
        
        if protocol.get('fallback_allowed'):
            return 'medium'
        
        return 'low'
    
    def algorithm_substitution(self, implementation: dict) -> list:
        """Identify algorithm substitution risks"""
        
        risks = []
        
        if not implementation.get('algorithm_validation'):
            risks.append('unvalidated_algorithm_selection')
        
        if implementation.get('dynamic_loading'):
            risks.append('runtime_algorithm_substitution')
        
        if not implementation.get('signature_on_parameters'):
            risks.append('parameter_tampering')
        
        return risks

Attack Scenarios

Scenario 1: Store-Now-Decrypt-Later (SNDL)

class SNDLAttackScenario:
    """Model Store-Now-Decrypt-Later attacks"""
    
    def assess_risk(self, data_classification: str, 
                   protection_lifetime: int) -> dict:
        """Assess SNDL risk for data"""
        
        quantum_timeline = {
            2025: 0.01,  # Probability of quantum break
            2030: 0.1,
            2035: 0.5,
            2040: 0.9
        }
        
        risk_score = 0
        for year, probability in quantum_timeline.items():
            if year <= 2025 + protection_lifetime:
                risk_score = max(risk_score, probability)
        
        return {
            'classification': data_classification,
            'protection_years': protection_lifetime,
            'quantum_risk': risk_score,
            'recommendation': 'immediate_pqc' if risk_score > 0.3 else 'planned_migration'
        }

Scenario 2: Real-Time Key Exchange Attack

class RealTimeAttackScenario:
    """Model real-time quantum attacks on key exchange"""
    
    def calculate_attack_window(self, protocol: str) -> dict:
        """Calculate time window for successful attack"""
        
        if protocol == 'tls_1.3':
            # Ephemeral keys with forward secrecy
            return {
                'window': 'session_duration',
                'typical_time': '5-30 minutes',
                'risk': 'low',
                'mitigation': 'frequent_key_rotation'
            }
        elif protocol == 'ipsec':
            # Longer-lived keys
            return {
                'window': 'sa_lifetime',
                'typical_time': '8-24 hours',
                'risk': 'medium',
                'mitigation': 'hybrid_pqc_required'
            }

Security Assumptions

Computational Assumptions

class PQCSecurityAssumptions:
    """Security assumptions for PQC algorithms"""
    
    assumptions = {
        'ml-kem': {
            'problem': 'Module-LWE',
            'assumption': 'No efficient quantum algorithm for M-LWE',
            'confidence': 'high',
            'years_studied': 15
        },
        'dilithium': {
            'problem': 'Module-SIS',
            'assumption': 'SIS problem remains hard quantumly',
            'confidence': 'high',
            'years_studied': 20
        },
        'falcon': {
            'problem': 'NTRU',
            'assumption': 'NTRU lattice problems quantum-hard',
            'confidence': 'high',
            'years_studied': 25
        },
        'slh-dsa': {
            'problem': 'Hash collision',
            'assumption': 'Hash functions remain one-way',
            'confidence': 'very_high',
            'years_studied': 40
        }
    }

Implementation Assumptions

class ImplementationAssumptions:
    """Security assumptions about implementations"""
    
    required_assumptions = [
        'Secure random number generation available',
        'Constant-time operations properly implemented',
        'Memory can be securely cleared',
        'Compiler does not optimize security code',
        'Hardware is not compromised',
        'Side-channels are adequately protected'
    ]
    
    def validate_assumptions(self, environment: dict) -> list:
        """Check which assumptions hold in environment"""
        
        violations = []
        
        if not environment.get('hardware_rng'):
            violations.append('No hardware RNG available')
        
        if environment.get('shared_hosting'):
            violations.append('Shared environment side-channels')
        
        if not environment.get('secure_compilation'):
            violations.append('Compiler optimizations not controlled')
        
        return violations

Risk Matrix

PQC Algorithm Risk Assessment

Algorithm Quantum Risk Classical Risk Implementation Risk Overall
ML-KEM-768 Very Low Very Low Medium Low
Dilithium3 Very Low Very Low Low Very Low
Falcon-512 Very Low Very Low High Medium
SLH-DSA Very Low Very Low Low Very Low
Classic McEliece Very Low Very Low Low Very Low

Deployment Risk Assessment

Deployment Type SNDL Risk Active Attack Risk Migration Risk
Long-term Storage Critical Low High
TLS/HTTPS Medium Medium Medium
Code Signing High Low Low
Email Encryption High Low Medium
VPN/IPSec Medium High High

Threat Mitigation Strategies

Defense in Depth

class DefenseInDepth:
    """Layered security approach for PQC"""
    
    def build_defense_layers(self) -> list:
        """Construct defense layers"""
        
        return [
            {
                'layer': 1,
                'name': 'Algorithm Diversity',
                'implementation': 'Use multiple PQC families'
            },
            {
                'layer': 2,
                'name': 'Hybrid Cryptography',
                'implementation': 'Combine classical and PQC'
            },
            {
                'layer': 3,
                'name': 'Implementation Hardening',
                'implementation': 'Side-channel countermeasures'
            },
            {
                'layer': 4,
                'name': 'Protocol Security',
                'implementation': 'Authenticated algorithm negotiation'
            },
            {
                'layer': 5,
                'name': 'Monitoring',
                'implementation': 'Anomaly detection and logging'
            }
        ]

Threat Intelligence Integration

class ThreatIntelligence:
    """Integrate threat intelligence for PQC"""
    
    def update_threat_landscape(self) -> dict:
        """Get current threat landscape"""
        
        return {
            'quantum_development': self.check_quantum_progress(),
            'new_attacks': self.check_cryptanalytic_advances(),
            'implementation_bugs': self.check_cve_database(),
            'threat_actors': self.check_apt_activity(),
            'recommendations': self.generate_recommendations()
        }
    
    def check_quantum_progress(self) -> dict:
        """Monitor quantum computing progress"""
        
        return {
            'current_qubits': 433,  # IBM Osprey
            'logical_qubits': 10,   # Error-corrected
            'threat_timeline': '5-10 years',
            'confidence': 'medium'
        }

Compliance Considerations

Regulatory Requirements

class ComplianceRequirements:
    """Track compliance requirements for PQC"""
    
    requirements = {
        'NIST': {
            'mandate_date': '2024-2030',
            'required_algorithms': ['ML-KEM', 'Dilithium', 'SLH-DSA'],
            'compliance_level': 'mandatory'
        },
        'CNSA_2.0': {
            'mandate_date': '2025-2033',
            'required_algorithms': ['ML-KEM', 'Dilithium'],
            'compliance_level': 'mandatory_for_natsec'
        },
        'EU': {
            'mandate_date': 'TBD',
            'guidance': 'Follow ENISA recommendations',
            'compliance_level': 'recommended'
        }
    }

Continuous Assessment

class ContinuousThreatAssessment:
    """Continuous threat model updates"""
    
    def schedule_assessments(self) -> dict:
        """Schedule regular threat assessments"""
        
        return {
            'daily': ['Check CVE feeds', 'Monitor quantum news'],
            'weekly': ['Review implementation changes', 'Analyze logs'],
            'monthly': ['Update risk matrices', 'Review mitigations'],
            'quarterly': ['Full threat model review', 'Compliance check'],
            'annually': ['Strategic assessment', 'Algorithm review']
        }

References

  1. NIST PQC Threat Model
  2. Quantum Threat Timeline
  3. Side-Channel Attacks on PQC
  4. ENISA PQC Migration
  5. NSA Quantum Computing FAQ

Security Guides

Threat Analysis

Implementation Resources