Quantum Computing Attack Threat Analysis
Version: 1.0
Last Updated: 2025-01-02
Security Classification: PUBLIC
Overview
Quantum computing poses an existential threat to many classical cryptographic algorithms. This document analyzes specific quantum attack algorithms, their impact on current cryptography, and timeline estimates for practical threats.
Quantum Attack Algorithms
Shor’s Algorithm
Purpose: Factor integers and compute discrete logarithms in polynomial time
Impact on Cryptography: | Algorithm | Classical Security | Quantum Security | Status | |———–|——————-|——————|——–| | RSA | Exponential | Polynomial | Broken | | ECDSA | Exponential | Polynomial | Broken | | DSA | Exponential | Polynomial | Broken | | ElGamal | Exponential | Polynomial | Broken | | ECDH | Exponential | Polynomial | Broken |
Quantum Resource Requirements:
def shor_resources(bit_size):
"""Estimate quantum resources for Shor's algorithm"""
# Logical qubits needed
logical_qubits = 2 * bit_size + 3
# Gate count estimate
gate_count = bit_size ** 3
# With error correction overhead (1000:1 ratio)
physical_qubits = logical_qubits * 1000
return {
'logical_qubits': logical_qubits,
'physical_qubits': physical_qubits,
'gate_count': gate_count,
'coherence_time_needed': 'hours'
}
# RSA-2048 requirements
rsa_2048 = shor_resources(2048)
# Result: ~4,099 logical qubits, ~4 million physical qubits
Grover’s Algorithm
Purpose: Search unsorted databases with quadratic speedup
Impact on Cryptography: | Algorithm | Classical Security | Quantum Security | Mitigation | |———–|——————-|——————|————| | AES-128 | 128 bits | 64 bits | Use AES-256 | | SHA-256 | 128 bits (collision) | 85 bits | Use SHA-384 | | 3DES | 112 bits | 56 bits | Deprecated |
Security Level Adjustments:
def grover_adjusted_security(classical_bits):
"""Calculate post-quantum security level"""
# Grover provides quadratic speedup
quantum_bits = classical_bits / 2
# Collision resistance for hash functions
collision_classical = classical_bits / 2
collision_quantum = classical_bits / 3
return {
'key_search': quantum_bits,
'collision_resistance': collision_quantum,
'recommended_key_size': max(256, classical_bits * 2)
}
Quantum Period Finding
Purpose: Solve hidden subgroup problems
Applications:
- Breaking discrete log cryptosystems
- Attacking certain lattice problems
- Solving hidden shift problems
Simon’s Algorithm
Purpose: Find hidden period with exponential speedup
Vulnerable Algorithms:
- Certain block cipher constructions
- Some authenticated encryption modes
- Specific MAC constructions
Quantum Threat Timeline
Current State (2025)
quantum_state_2025 = {
'best_quantum_computer': {
'logical_qubits': 10-20,
'physical_qubits': 1000+,
'coherence_time': 'milliseconds',
'error_rate': 0.1-1%
},
'cryptographic_impact': 'None',
'research_focus': 'Error correction'
}
Projected Timeline
| Year | Capability | Threat Level | Action Required | |——|————|————–|—————–| | 2025-2030 | NISQ era, <100 logical qubits | Low | Monitor progress | | 2030-2035 | 100-1000 logical qubits | Medium | Begin migration | | 2035-2040 | 1000-10000 logical qubits | High | Complete migration | | 2040+ | Cryptographically relevant | Critical | PQC only |
Quantum-Resistant Algorithms
NIST PQC Standards
pqc_algorithms = {
'kem': {
'ML-KEM': 'Lattice-based, FIPS 203',
'security_levels': [128, 192, 256]
},
'signatures': {
'ML-DSA': 'Lattice-based, FIPS 204',
'SLH-DSA': 'Hash-based, FIPS 205',
'Falcon': 'NTRU lattice, Round 3'
},
'quantum_resistance': 'Proven under standard assumptions'
}
Hybrid Quantum-Classical Attacks
Quantum-Enhanced Classical Attacks
class HybridAttacks:
"""Attacks combining quantum and classical computing"""
def quantum_sieve(self, lattice_problem):
"""Use quantum computer for sieving step"""
# Quantum speedup: polynomial
# Still exponential overall
quantum_advantage = 2 ** (0.265 * n) # vs 2 ** (0.292 * n)
return quantum_advantage
def variational_quantum_attacks(self):
"""NISQ-era attacks using VQE/QAOA"""
return {
'current_capability': 'Limited to small problems',
'potential': 'May improve classical optimization',
'threat_level': 'Research only'
}
Quantum Attack Mitigation
Immediate Actions
- Inventory: Identify quantum-vulnerable systems
- Prioritize: Focus on long-term secrets
- Hybrid: Implement classical+PQC combinations
Migration Strategy
def migration_priority(system):
"""Determine migration urgency"""
scores = {
'data_sensitivity': 0, # 0-10
'data_lifetime': 0, # years
'system_criticality': 0, # 0-10
'migration_complexity': 0 # 0-10
}
# Long-lived sensitive data
if system['data_lifetime'] > 10:
scores['data_sensitivity'] += 5
# Critical infrastructure
if system['type'] in ['pki', 'root_ca', 'key_management']:
scores['system_criticality'] = 10
# Calculate priority
priority = (scores['data_sensitivity'] * scores['data_lifetime'] +
scores['system_criticality'] * 10) / scores['migration_complexity']
return priority
Quantum-Safe Security Levels
Bit Security Equivalence
| Classical | Post-Quantum | NIST Level | Example Algorithm | |———–|————–|————|——————-| | 128-bit | 128-bit | Level 1 | ML-KEM-512, AES-128 | | 192-bit | 192-bit | Level 3 | ML-KEM-768, AES-192 | | 256-bit | 256-bit | Level 5 | ML-KEM-1024, AES-256 |
Store-Now-Decrypt-Later (SNDL)
Risk Assessment
def sndl_risk(data_classification, protection_years):
"""Assess SNDL attack risk"""
# Probability of quantum computer by year
quantum_probability = {
2030: 0.05,
2035: 0.25,
2040: 0.60,
2045: 0.85,
2050: 0.95
}
# Calculate exposure risk
exposure_end = 2025 + protection_years
risk = 0
for year, prob in quantum_probability.items():
if year <= exposure_end:
risk = max(risk, prob)
return {
'risk_level': risk,
'recommendation': 'Immediate PQC' if risk > 0.3 else 'Planned migration'
}
Quantum Cryptanalysis Research
Active Research Areas
- Quantum algorithms for lattice problems
- Quantum walks on cryptographic structures
- Quantum machine learning for cryptanalysis
- Adiabatic quantum computing applications
Defensive Research
- Quantum-resistant primitives
- Quantum key distribution (QKD)
- Quantum random number generation
- Post-quantum zero-knowledge proofs
Testing Quantum Resistance
Simulation Tools
- Qiskit: IBM quantum computing framework
- Cirq: Google quantum circuits
- Q#: Microsoft quantum development
- PQCrypto-SIDH: Post-quantum testing
Validation Approaches
- Mathematical proofs of quantum resistance
- Quantum algorithm complexity analysis
- Empirical testing on quantum simulators
- Hybrid classical-quantum attack modeling